Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

نویسندگان

  • James H. Pikul
  • Jinyun Liu
  • Paul V. Braun
  • William P. King
چکیده

Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 mWh cm 2 mm 1 and peak power 5300 mW cm 2 mm 1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes.

High-performance miniature power sources could enable new microelectronic systems. Here we report lithium ion microbatteries having power densities up to 7.4 mW cm(-2) μm(-1), which equals or exceeds that of the best supercapacitors, and which is 2,000 times higher than that of other microbatteries. Our key insight is that the battery microarchitecture can concurrently optimize ion and electron...

متن کامل

Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries.

As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs hav...

متن کامل

3D printing of interdigitated Li-ion microbattery architectures.

3D interdigitated microbattery architectures (3D-IMA) are fabricated by printing concentrated lithium oxide-based inks. The microbatteries are composed of interdigitated, high-aspect ratio cathode and anode structures. Our 3D-IMA, which exhibit high areal energy and power densities, may find potential application in autonomously powered microdevices.

متن کامل

Nanoarchitectured 3D cathodes for Li-ion microbatteries.

Rechargeable lithium ion batteries, due to their high energy density and design fl exibility, are the vital power sources for a variety of modern portable electronic devices and are the prime candidates to power next generation of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). [ 1 ] With a rich and versatile chemistry leading to a wide range of electrode materials, severa...

متن کامل

Li-ion microbatteries generated by a laser direct-write method

A laser-based direct-write process is demonstrated as a method to fabricate Li-ion microbatteries. The battery electrodes are made by the laser-induced forward transfer of inks of charge-storage materials (composites of carbon/binder and LiCoO2/carbon/binder) onto micromachined metal-foil current collectors to form 40–60 m thick electrodes with 16 mm2 (4 mm × 4 mm) footprints. Both half cells a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016